Probability and Statistics Questions and Answers - Baye’s Theorem

1. Total probability theorem is used in Baye’s theorem.
a) True
b) False

Answer: a
Explanation: Total probability theorem is used in Baye’s theorem. Baye’s theorem is given by
\(P(E_{i}|A) = \frac{P(Ei)P(A∨Ei)}{∑P (Ei)P(A∨Ei)}. \)

2. Theorem of total probability is given by P(A) = P(E1) P(A|E1) + P(E2) P(A|E2) +…..(n terms).
a) True
b) False

Answer: a
Explanation: The total probability P(A) is given by the sum of the product of the probability of a particular event and the probability of A given the particular event. Hence the formula is true.

3. In badminton practice session, the probability that the player A serves properly is 0.8 and that he player B serves properly is 0.9. If there are only two players, then find the probability that it is serves properly.
a) 0.75
b) 0.85
c) 0.95
d) 0.55

Answer: b
Explanation: Let A be the event that the service is done properly and Ei be the event that a player is selected. Then,
P(A) = P(E1) P(A|E1) + P(E2) P(A|E2)
\( = (\frac{1}{2})(\frac{8}{10}) + (\frac{1}{2})(\frac{9}{10}) \)
= 0.85.

4. The probability that person A completes all the tasks assigned is 50% and that of person B is 20%. Find the probability that all the tasks are completed.
a) 0.15
b) 0.25
c) 0.35
d) 0.45

Answer: c
Explanation: Let A be the event that all tasks are completed and Ei is the event that a person is selected.
Then,
P(A) = P(E1) P(A|E1) + P(E2) P(A|E2)
\( =(\frac{1}{2})(\frac{50}{100}) + (\frac{1}{2})(\frac{20}{100}) \)
= 0.35

5. Let there be two newly launched phones A and B. The probability that phone A has good battery life is 0.7 and the probability that phone B has good battery life is 0.8. Then find the probability that a phone has a good battery life.
a) 0.65
b) 0.75
c) 0.85
d) 0.45

Answer: b
Explanation: Let A be the event thtat a phome has a good battery life and Ei be the event that a phone is selected. Then,
P(A) = P(E1) P(A|E1) + P(E2) P(A|E2)
\( = (\frac{1}{2})(0.7) + (\frac{1}{2})(0.8) \)
= 0.75.

6. Three companies A, B and C supply 25%, 35% and 40% of the notebooks to a school. Past experience shows that 5%, 4% and 2% of the notebooks produced by these companies are defective. If a notebook was found to be defective, what is the probability that the notebook was supplied by A?
a) 4469
b) 2569
c) 1324
d) 1124

Answer: b
Explanation: Let A, B and C be the events that notebooks are provided by A, B and C respectively.
Let D be the event that notebooks are defective
Then,
P(A) = 0.25, P(B) = 0.35, P(C) = 0.4
P(D|A) = 0.05, P(D|B) = 0.04, P(D|C) = 0.02
P(A│D) = (P(D│A)*P(A))/(P(D│A) * P(A) + P(D│B) * P(B) + P(D│C) * P(C) )
= (0.05*0.25)/((0.05*0.25)+(0.04*0.35)+(0.02*0.4)) = 2000/(80*69)
= 2569.

7. A box of cartridges contains 30 cartridges, of which 6 are defective. If 3 of the cartridges are removed from the box in succession without replacement, what is the probability that all the 3 cartridges are defective?
a) \(\frac{(6*5*4)}{(30*30*30)}\)
b) \(\frac{(6*5*4)}{(30*29*28)}\)
c) \(\frac{(6*5*3)}{(30*29*28)}\)
d) \(\frac{(6*6*6)}{(30*30*30)}\)

Answer: b
Explanation: Let A be the event that the first cartridge is defective. Let B be the event that the second cartridge is defective. Let C be the event that the third cartridge is defective. Then probability that all 3 cartridges are defective is P(A ∩ B ∩ C)
Hence,
P(A ∩ B ∩ C) = P(A) * P(B|A) * P(C | A ∩ B)
= (630) * (529) * (428)
= (6 * 5 * 4)(30 * 29 * 28).

8. Two boxes containing candies are placed on a table. The boxes are labelled B1 and B2. Box B1 contains 7 cinnamon candies and 4 ginger candies. Box B2 contains 3 cinnamon candies and 10 pepper candies. The boxes are arranged so that the probability of selecting box B1 is 13 and the probability of selecting box B2 is 23. Suresh is blindfolded and asked to select a candy. He will win a colour TV if he selects a cinnamon candy. What is the probability that Suresh will win the TV (that is, she will select a cinnamon candy)?
a) 733
b) 633
c) 1333
d) 2033

Answer: c
Explanation: Let A be the event of drawing a cinnamon candy.
Let B1 be the event of selecting box B1.
Let B2 be the event of selecting box B2.
Then, P(B1) =13 and P(B2) = 23
P(A) = P(A ∩ B1) + P(A ∩ B2)
= P(A|B1) * P(B1) + P(A|B2)*P(B2)
= (711) * (13) + (311) * (23)
= 1333.

9. Two boxes containing candies are placed on a table. The boxes are labelled B1 and B2. Box B1 contains 7 cinnamon candies and 4 ginger candies. Box B2 contains 3 cinnamon candies and 10 pepper candies. The boxes are arranged so that the probability of selecting box B1 is 13 and the probability of selecting box B2 is 23. Suresh is blindfolded and asked to select a candy. He will win a colour TV if he selects a cinnamon candy. If he wins a colour TV, what is the probability that the marble was from the first box?
a) 713
b) 137
c) 733
d) 633

Answer: a
Explanation: Let A be the event of drawing a cinnamon candy.
Let B1 be the event of selecting box B1.
Let B2 be the event of selecting box B2.

Then, P(B1) = 13 and P(B2) = 23
Given that Suresh won the TV, the probability that the cinnamon candy was selected from B1 is
P(B1|A) = (P(A|B1) * P( B1))/( P(A│B1) * P( B1) + P(A│B1) * P(B2))
\(\frac{(\frac{7}{11})*(\frac{1}{3})}{(\frac{7}{11})*(\frac{1}{3})+(\frac{3}{11})*(\frac{2}{3})}\)
= 713.


10. Suppose box A contains 4 red and 5 blue coins and box B contains 6 red and 3 blue coins. A coin is chosen at random from the box A and placed in box B. Finally, a coin is chosen at random from among those now in box B. What is the probability a blue coin was transferred from box A to box B given that the coin chosen from box B is red?
a) 1529
b) 1429
c) 12
d) 710

Answer: a
Explanation: Let E represent the event of moving a blue coin from box A to box B. We want to find the probability of a blue coin which was moved from box A to box B given that the coin chosen from B was red. The probability of choosing a red coin from box A is P(R) = 79 and the probability of choosing a blue coin from box A is P(B) = 59. If a red coin was moved from box A to box B, then box B has 7 red coins and 3 blue coins. Thus the probability of choosing a red coin from box B is 710 . Similarly, if a blue coin was moved from box A to box B, then the probability of choosing a red coin from box B is 610.
Hence, the probability that a blue coin was transferred from box A to box B given that the coin chosen from box B is red is given by
\(P(E|R)=\frac{P(R|E)*P(E)}{P(R)}\)
=\(\frac{(\frac{6}{10})*(\frac{5}{9})}{(\frac{7}{10})*(\frac{4}{9})+(\frac{6}{10})*(\frac{5}{9})}\)
= 1529.